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This paper deals with the semi-inverse, HA, and inverse problems of compressible flow 
along an S 2 stream sheet in mixed flow turbomachines, for which families of variational 
principles (VPs) are derived. In the VPs for the semi-inverse problem, the distributed gas 
injection and/or suction along the hub walls and casing walls are accounted for. VP families 
for axial and radial flow turbomachines can be obtained directly from this paper as special 
cases. Great attention is paid to taking full advantage of natural boundary conditions and 
"artificial interfaces" in order to offer a perfect theoretical basis for the finite element method 
or other direct variational methods in computational aerodynamics of turbomachinery. This 
theory also provides broader and versatile ways for blading design. 
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In t roduct ion 

The quasi-three-dimensional (quasi-3D) flow theory of turbo- 
machinery based on Wu's S 1 (blade-to-blade) and S z (hub-to- 
tip) stream surface modeP has found worldwide recognition and 
acception for practical turbomachine analysis and design. 
Before 1974, all numerical solutions were carried out by the 
streamline curvature method or by the finite difference method. 6 
In the 1970s the remarkable success of the finite element method 
(FEM) in applied mechanics and engineering has renewed the 
interest of scientists and engineers in the search for variational 
principles (VPs) in fluid mechanics, 17 in general, and in 
turbomachine aerothermodynamics, in particular, 2-5'7' ~ 1,12.15 
because VPs form a most reliable and useful theoretical 
foundation of FEM. The VP-based FEM has several 
advantages over the FEM based on the weighted residual 
procedure (including the Galerkin FEM). t8 First, the former 
can be directly coupled with the modern mathematical 
programming method. Second, functional variation with 
variable domain is a unique, powerful means for solving all 
problems with unknown boundaries, such as free surface flow, 
flow with cavities, shocks, free vortex sheets, and inverse and 
hybrid problemsJ 1,15 

For $2 flow the FEM was applied to the semi-inverse problem 
for the first time by Adler and Krimerman, 8 using an 
approximate VP for the Poisson equation; they claimed that an 
exact VP for Se flow could not be obtained. Subsequently, Oates 
et al. 7 developed an exact VP for the semi-inverse problem 
based on a crude actuator-disk model, in which the flow fields in 
both stators and rotors disappear, so it is of limited use for 
practical blading design. In Ref. 9, Hirsch and Warzee solved 
the semi-inverse and direct problems of S z flow by the Galerkin 
FEM, using circumferentially averaged flow equations. 

At first, the hybrid problem of cascades on an arbitrary 
stream sheet of revolution and the corresponding VPs were 
suggested by Liu s as a unification and generalization of the 
traditional direct and inverse problems to meet various 

in fluids; finite element 

requirements of modern turbomachinery development 
Recently it has been extended to fully 3D rotor flow as well. 11,20 
It is natural to handle the S 2 flow problem similarly. Thus, Liu 3 
and Cai 4 developed VP families for $2 flow in axial and radial 
flow turbomachines, respectively, dealing with the following 
three aerodynamic problems of $2 flow: 

(a) The semi-inverse problem: Given the hub and casing shapes 
and the distribution of V, pr along the $2 stream sheet, find 
the flow field and the shape of the $2 stream sheet. 

(b) The hybrid problem of type "A" (abbreviated as H A 
problem): Given the distribution of V,~r along $2, some part 
of the hub and casing shapes, and the pressure distribution 
along the remaining part, find the shape of $2, the hub and 
casing shapes, and the flow field. 

(c) The complete inverse problem: This is a special case of the 
H A problem, when both the hub and casing shapes are 
unknown but a pressure distribution along them is specified 
instead. 

This paper is a continuation and generalization of Refs. 3 and 
4 to mixed flow turbomachinery. Families of variational 
principles for these problems are derived herein. For  this 
purpose, the momentum equation in an arbitrary quasi- 
orthogonal direction, y, is used as the principal equation. 6 In the 
VPs for the semi-inverse problem, the distributed gas injection 
and/or suction along the hub and casing walls can be accounted 
for for the boundary layer control, cooling, or surge-suppressing 
purposes. To circumvent the difficulties associated with the 
existence of some unknown boundary, the VPs for the hybrid 
problem are established on an image plane ¢~b defined by 
Equation 6. In contrast, in a companion paper 15 the hybrid 
problem is handled via functional variations with variable 
domain directly on the physical plane. 

VP families for the same problems of axial and radial flow 
turbomachines presented, respectively, in Refs. 3 and 4 can be 
obtained directly from the results of this paper as special cases. 
We take full advantage of natural boundary conditions and 
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Flow field and its image on an $2 stream sheet in mixed flow 
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turbomachines: (a) image plane; (b) physical plane 

"artificial interfaces"~ 6 in order to offer a sound theoretical basis 
for the finite element method or other direct variational 
methods. 

rotated rectangular (x, y) coordinate system, as shown in 
Figure l, is used to avoid the indeterminacy of the soluton. 1° 
Then, from Refs. 1-4, we have the following aerodynamic 
equations: 

F a m i l y  o f  V P s  f o r  t h e  s e m i - i n v e r s e  p r o b l e m  

F u n d a m e n t a l  equat ions  o f  aerodynamics  

For a n  5 2 flOW in mixed flow turbomachines containing 
simultaneously pure axial and pure radial flow domains, a 

Continuity equation : 

c3x -- Brp Wr, c3y = Brp W~ (1) 

N o m e n c l a t u r e  

A 

0A 2 

~A 3 
B 

Co 
Ce, Ca 
Ci 
C~, 
F 

lffy 
f 

k 
m 

p,q' 
r, tp, z 
I~,R 

S,s 
Ag 
t, h 
u, U 

Solution domain on S 2 stream sheet 
Boundary segment of A with prescribed ip = ~kpr 
Boundary segment of A with prescribed 
tangential velocity W t = (Wt)pr 
Artificial interfaces 16 
Angular thickness of the stream sheet 
po/p~o 
Inlet and outlet, respectively 
Leading/trailing edges of the blades, i = l, 2 , . . .  
Specific heat at constant volume 
Force per unit mass of fluid resulting from the 
pressure difference between two lateral surfaces 
of the stream sheet 1 
(Fr +fy) /W.  
Viscous force per unit mass 2"15 
|sentropic index 
( k -  1) -1 
Pressure and heat input, respectively 
Cylindrical coordinates fixed on rotor 
Rothalpy or its given distribution R(~, ~) and 
gas constant, respectively 
Entropy and arc length, respectively 
(s - So)/Cv 
Tip and Hub annular walls, respectively 
o~r, peripheral speed of blades and internal 
energy, respectively 

v,v~ 

W. WI 

x , y  

F 

tPo 

0 
O) 

P 
?/a 

Absolute velocity and its azimuthal component, 
respectively 
Relative velocity and its meridional component, 
respectively 
Rectangular coordinate system on meridional 
plane (Figure 1) 
Angle between axes x and z 
V~r 
Curvilinear coordinate along meridional 
streamline 
Dissipation function 
tp-distribution ~p=tpo(y ) or tp= ~po(~k) specified 
along a selected initial line X=Xo(y ) or ~=¢o(~b) 
Angle between the integral path and the ~-axis 
Stream function 
Angular speed of the rotor 
Density 
Partial derivatives along $2 surface 1 

Subscripts 
0 Reference state 
pr Prescribed 
1 Meridional streamwise component 
t Tangential component 
x, y Components along x and y coordinates 
+ ,  - Values on the two sides of the integration path 
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Y-momentum equation: 

& 
~% - Bw W~ (2) + r  

Equation of state: 

p = Cop  ~ exp(AS) (3) 

For  an adiabatic flow, the energy equation is 

k m p / p  + ( W  2 - -  u2)/2 =/~(¢, ¢) (4) 

Here f i r =  (Fr + f r ) / W x  and is determined from ~ and p of the 
previous iteration. R(~, ~,) is a given distribution of rothalpy, 
and the transformation 

= x, ~b = O(x, y) (5) 

is introduced. In addition, we specify the distributions of V.r ,  B,  
and S along $2: V~,r = F({, 0), S = S(G q*), and B = B ( x ,  y).  

Note that henceforth, for brevity, all partial derivatives along 
$2 are symbolized as conventional ones. 

Boundary condit ions 

Along some part of the external boundary (inlet, outlet, hub and 
casing walls) 8A1, ff = epr is given, but along the remaining part 
8A2, W t = (Wt)pr is specified. 

The composition of 8A~ and OA2 may be quite different from 
case to case, depending on the design requirements under 
consideration. Three typical options are listed in Table 1. 

All physical parameters are required to be continuous at 
internal interfaces C~ and artificial interfaces ~A3 .16 

principles for the semi-inverse problem of an $2 stream sheet in 
mixed flow turbomachines, as shown in Table 2. Here SGVP 
and GVP denote a subgeneralized VP and a generalized VP, 
respectively. In all VPs in Table 2 all boundary conditions have 
been converted to natural ones. This will greatly facilitate the 
practical numerical handling of the quite complicated boundary 
conditions under consideration. 

Family of VPs for the HA problem 

Y-momentum equation and cont inuity equation on an 
image plane 

Assuming that the inversion of the transformation, Equation 5 
exists, we have 

x = 4, y = y({, ~,) (6) 

Then the original domain with partly unknown boundary is 
transformed into one with fully known boundary. In fact, it 
becomes a trapezoid domain if there is no injection and/or 
suction along the hub and casing walls. The Y-momentum 
equation and continuity equations on the image plane (~, ~) can 
be written as follows: 

B , t ~ y _ l  ' 3Y-"  " ~y (7) rp w x 8tk -- ' t?~ -- ~ r p  w r ~1~ 

Equations 3 and 4 remain valid here. 

Variational principles 

By using the inverse-derivation method and the constraint- 
removing transformation 2'12, we can derive variational 

Table 1 Typical compositions of the boundary 

Option I Option II Option III 

#A 1 h+t* h+t+C e h+t+Ce+Ca 
~A 2 Ce + Ca Ca - -  

* For symbols see Nomenclature. 

Boundary condit ions 

Let ~tA t denote a part of the external boundary, on which 
P=(P)pr is given, and &42 the remaining part, on which 
Y=(Y)pr is given. Wr=(Wr)pr must be given at the inlet and 
outlet boundaries. 

Let C i denote the internal interfaces, and &43 the artificial 
interfaces, on which all physical parameters should be 
continuous. 

Variational principles 

A family of VPs for the H A problem on the image plane, ~-~b, 
which is shown in Figure l(b), can be derived from the foregoing 

Table 2 VPs for the semi-inverse problem 

Functionals Constraints Euler's equations 

A ( 1 r /8¢, \2 ,/8¢\2q 

SGVP2 J2(¢, p) =J1 (~) formally (1), (3) (2), (4) 

+Brp[12 ( u 2 - W ' , + l ~ ] - B r m p ( l + A g - l n + ) - ~ - ~ } d x d y + S #  
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Table 3 VPs for the HA problem 

Functionals Constraints Euler's equations 

J , , ~' f [ l +  (~y/~)2] Oy 
vP,  = J(A, 28,m n ) + Brp 

_ Compk- 1 exp (Ag)] + PrY} de de + S[, 

SGVPe Js(Y, P) =J4(Y) formally (3), (7) 

GVP6 J,(Y, p, p, Wx, Wv) = f(A) { Wx + Wv ~ + Br p[ t~ + oF -  ½(F2 /r2 + W') - -  

P "~3 c~Y fyy}d~d~+S'b mpp ( l + A ~ _ l n c 0 ~ ) j ~  + 

S'b=f(#A1) (Bp)p,(ry-y2c°sc(/2)c°svds- f(Ce, Oa) (Wv)wysinvds+ j(~,42 ) (  (Y-Yp~)(Brpc°sv-Wrsinv)ds 

+f(t~A3) (y_-y+)(Brpcosv-Wvsinv)+ ds, r=xsin~+ycos~ 

(3), (4), (7) (8) 

(4), (8) 

(3), (4), (7), (8) 

J l-J3 by a transformation of inversion.2 This family is shown in 
Table 3 where B(x, y), F(¢, 0), g(~, 0), S(¢, 0), and Fr(¢, 0) are 
assumed known and W~ = F/r- o)r. 

Again, in Table 3 all boundary conditions have been converted 
into natural ones. 

T w o  famil ies of nonclassical VPs 
for  the HA problem 

Restricted VPs 
Restricted VPs can be generated by adding 

~Aj o/ 2 ~t\ ~3B p~yr-y  cos~) ~ dO d* 

to each of the functionals J4-Jr, where /~ meas that this 
pressure/~ must be held fixed when the variations of J4-J6 are 
being made and/~ is set to p immediately after variation, ts In 
this family of VPs, B=B(~, 0) is specified. 

VPs with iterative terms 

VPs with iterative terms can be obtained by adding 

fA P("- t ' (yr -y2c°s ; )~dO d' 

to each of the functionals J4-J6, where p("- ~) denotes p of the 
previous iteration; B=  B(G 0) is also a known function for this 
family. 

Unif icat ion of VP  famil ies for  axial, radial, 
and mixed f l o w  turbomachines 

Families of VPs for the same problems of axial and radial flow 
turbomachines derived in previous papers 3'4 can be regarded 
as special cases of the present results. Let y = r, x = z (i.e., a = 0), 
and y = z, x = - r (i.e., a = - n/2), in J l -J6.  Then the functionals 
of Refs. 3 and 4 can be derived. 

Determinat ion  of viscous terms 

To determine viscous terms, an approximate loss model has 
been suggested in Refs. 3 and 4, starting from the first law of 
thermodynamics,2'15 

D/~ _ D q '  4_~ + f .W (9a) 
Dt Dt p 

Dq' _ D U t- p(dp- t)_ ~_ (9b) 
Dt Dt p 

and the Gibbs identity, 

p DS DU - -  + pdp- 1 (10) 
Rp Dt Dt 

Combining Equations 9 and 10 gives 

p DS Dq' 
- - -  ~ (11) 

Rp Dt Dt p 

D/~_Oq '  F ~ + f . W =  p D S + f . W  (12) 
Dt Dt p Rp Dt 

Consider adiabatic flow. We know from boundary layer 
theory that for adiabatic flow with Pr=  1 the stagnation 
enthalpy H of steady absolute flow is uniform, including, of 
course, DH/Dt=O. 2 For adiabatic steady relative flow with 
Pr = 1, however, the rothalpy/~ is, strictly speaking, generally 
not uniform. Nevertheless, D/~/Dt=0 can be assumed 
approximately to hold. This assumption is sufficiently accurate 
for engineering calculations, at least for S 2 flows not deviating 
significantly from axial flow. Thus, from Equations 11 and 12 we 
get 

p (DS~ = ~ - - = - f ' W  (13) 
Rp \ D t / a  d p 

where (DS/Dt). d for adiabatic flow can be evaluated using 
empirical loss coefficients. 

Moreover, if we assume, similar to 1D flow 2, that fis parallel 
but opposite to W, we obtain from Equation 16 

f =plW I 
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Other approximate loss models (e.g., those suggested by 
Bosman and Marsh ~ 3 and Horlock ~4) can also be incorporated 
for determining viscous terms in the VPs. 

Determination of i~ v and the $2 stream 
surface shape 

In all VPs presented above Fy is assumed to be known but 
should be updated after every converged ~, (or y)-solution has 
been obtained. This updating can be accomplished in two ways. 
The one given in Ref. 1 does not have sufficient numerical 
accuracy due to multiple numerical differentiations involved, so 
a new method is suggested as follows: 

Because V,r=F(~, f f )  is known, the circumferential 
component of the momentum equation for $2 yields 2'3'4 

1 D F  W~JF 
F~+f '*=r  D t -  r ~x (15) 

If the equation of the $2 stream sheet is q~ = ~o(x, y), then, since F 
is orthogonal to $2, we can write 2 

f r ~o 
F~r Oy 

which, after inserting Equation 15, gives 

~ F )  ~o (16) 

Obviously, we have 

8~0_ w~ _ r/r ~ - 

at rWt W~ 

Integrating it aong the streamline, we obtain 

¢p(~,~0)=<Po+ ¢o r 2 -  --W. (17) 

We obtain the distribution of ¢p along the streamline. Then, 
c~<p/d¢, can be calculated simply by numerical differentiation. 
Using 

~ °  - ~q' ~O - Br t) W~ ~'p (18) 
c3y a~ ay c~ 

we get j~o/dy. Consequently, Fs can be updated from Equation 
16. 

In this method of updating Fr the computation of F~ and F= is 
not required at all. Moreover, because direct use of the S 2 

stream surface equation q~ = q~(x, y) (or q~= q~(~, q/)) has been 
made, the integrability condition 1 

F - V x F = 0  (19) 

need not be employed explicitly. 

Computational example by FEM 

Finally, a computational example of the semi-inverse problem of 
the S 2 stream sheet of a two-stage, axial flow air compressor, as 
shown in Figure 2, is given. The rotational speed is 6540 r/min. 
The inlet total parameters are uniform. The distribution of 
entropy in the flow field is determined by guessing the isentropic 
efficiency in the rotor region and the total pressure recovery 
coefficient in the remaining regions. The distribution of the 
stream function along the hub and tip is given and handled as 
essential boundary conditions. At the inlet and outlet we have 
the natural boundary condition W t =0.  The flow field is divided 
into 3 x 24 or 5 x 24 eight-node isoparametric elements. The 
nonlinear algebraic equation system obtained from 6J~ is 
linearized by the distribution of ~O and t) of the previous 
iteration. 

A coupled t0-t) iteration method is used to solve the semi- 
inverse problem of an S 2 stream sheet. That is, the iterations oft) 
alternate with the iterations of ~0. A first guess at the distribution 
of ff is made according to uniform flow in every cross section of 
the channel. The solution oft) at every node point is reduced to 
finding the null point of a function f(t)): 

J(t)) = A 1 t )  k - 1 _}_ A 2/t) 2 + A 3 (20) 

where 

A 1 = Cokm exp(AS) 

1 1 2 ~t/s 2 {~l]l 2 

An initial guess at the distribution of/9 can be made by taking 
t)¢o~ = _ (A3/A~),I. At some node points no null points off(t) ) are 
found, because an unsuitable guess at the initial stage of 
iteration has been made. Then we developed the discriminant 

<ik_ 1)¢k_,,,,k+,,(2 \ ~ )  \ k + l /  (21) 

Null points of f(p) cannot be found unless Equation 10 can be 
satisfied at that node point. 

The present treatment is validated by the calculated results. 
The calculated axial velocity profiles at outlets of the blade 
domains are shown in Figure 3, and the calculated distribution 
of static pressure along the hub and tip casings is given in Figure 
4. Figure 5 illustrates the convergence behavior of iterations for 
~k. It seems that the convergence of the present treatment is 
satisfactory. 

Further computations of examples of the H A problem are 
now in progress and will be reported in a later paper. Noting, 
however, that the variational finite element solutions to the 
hybrid problems H A and H a of blade-to-blade flow have been 
given, ~ 9 we can expect by similarity that good numerical results 
could also be obtained for the H A problem of S 2 flow by FEM 
based on VPs derived herein. 
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Conclusions 

Families of VPs for the semi-inverse, H A hybrid and complete 
inverse problems of an S 2 stream sheet in mixed flow 
turbomachines are developed unifying the results of previous 
papers. 3'4 Thus, a more perfect theoretical basis is provided for 
constructing a universal computer  program for F E M  or other 
direct variational methods. Certainly, its utilization will bring 
great convenience into practical calculations. F rom the 
computat ional  example, it is seen that the application of F E M  
based on VPs derived here to the problems of an S 2 stream sheet 
is reliable. The theory developed here allows all or  part of the 
inner and outer annular  walls to be profiled .rationally by 
specifying favorable pressure distributions, providing broader 
and versatile ways for blading design. 
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